Fiber laser welding enables new capabilities and flexibility

New capabilities and flexibility for fiber laser welding of metals and alloys is gaining the attention of many leading manufacturers, especially those in the aerospace industry. These advances center on developing process and system capabilities for welding 2D and 3D components with low-, medium-, and high-power continuous-wave (CW) and quasi-CW (QCW) fiber lasers.

When compared to CO2 lasers for welding, it is well documented that the 1μm wavelength of the fiber laser provides benefits in terms of simplified beam delivery using fiber-optic cables instead of turning mirrors; greater absorption by metals, especially those that are good conductors of electricity such as aluminum and copper; and less absorption by the plasma plume that is formed above the weld pool. The higher brightness of the fiber laser—compared to high-power Nd:YAG lasers—means that the laser beam, if desired, can be focused to smaller sizes, which in turn leads to increased power density. These factors contribute to deeper penetration and faster welding speed than available from previous sources of equivalent average power. They also mean more stable welding processes in a wider range of metals and alloys.

Laserdyne, with 33 years’ experience installing numerous laser welding systems for aerospace (engine and airframe), automotive, electronics, fluid couplings, and medical device applications using CO2, Nd:YAG, and, more recently, fiber laser sources, has gained a unique understanding of these lasers’ flexibility and capability through experience in welding high-value-added components.